

QUICKSTEP COMPUTER CENTER

National Accreditation Board of Education Training. (NABET)- Quality council of India) An ISO 9001:2008

DATA SCIENCE - AI, ML, DL

1. Introduction to Data Science

 \checkmark

- a. What is data science?
 - How is data science different from BI and Reporting?
- b. What is difference between AI, Data Science, Machine Learning, Deep Learning
- c. Job Land scape and Preparation Time
- d. Who are data scientists?
 - What skillsets are required?
- e. What is day to day job of Data Scientist
 - What kind of projects they work on?
- f. End to End Data Science Project Life Cycle
- g. Data Science roles functions, pay across domains, experience

2. Business Statistics

- a. Data types
 - ✓ Continuous variables
 - Ordinal Variables
 - ✓ Categorical variables
 - ✓ Time Series
 - ✓ Miscellaneous
 - Common Data Science Terminology
- **b.** Descriptive statistics
 - ✓ Basics concepts of probability
 - Frequentist versus Bayesian Probability
 - ✓ Axioms of probability theory,
 - Permutations and combinations
 - ✓ Conditional and marginal probability
 - ✓ Joint Probability
 - ✓ Bayes Theorem
 - Probability Mass Function and Probability Density Function
 - ✓ Cumulative Mass Function and Cumulative Density Function

c. Central Tendencies

- ✓ Mean
- ✓ Median
- ✓ Mode
- ✓ Spread
- ✓ Variance
- ✓ Standard Deviation
- ✓ Effects on central tendencies after transformations
- ✓ Quartile Analysis
- ✓ Implementation of central tendencies using python
- ✓ Box Plots for outlier identification

✓ Drawing Box plots using python

- d. Sampling
 - Need for Sampling?
 - ✓ Different types of Sampling
 - ✓ Simple random sampling
 - ✓ Systematic sampling
 - ✓ Stratified Sampling
 - Implementation of sampling techniques using python
- e. Data distributions
 - ✓ **Normal Distribution**
 - ✓ Binomial Distribution
 - ✓ Binomial Approximated to Normal
 - Implementation of distributions using python
- f. Inferential statistics
 - ✓ Why inferential statistics?
 - ✓ Z score calculation
 - ✓ Defining p value and implementations using python
 - ✓ Inferring from sample to population
 - Sampling distribution of sample means
- g. Hypothesis testing
 - ✓ Confidence Interval
 - Testing the hypothesis
 - ✓ Type I error
 - ✓ **Type II error**
 - ✓ Null and alternate hypothesis
 - ✓ Reject or acceptance criterion

3. Introduction to R

- a. A Primer to R programming
- b. What is R? Similarities to OOP and SQL
- c. Types of objects in R lists, matrices, arrays, data.frames etc.
- d. Creating new variables or updating existing variables
- e. If statements and conditional loops For, while etc.
- f. String manipulations
- g. Sub setting data from matrices and data.frames
- h. Casting and melting data to long and wide format.
- i. Merging datasets

4. Python for Data Science

- a. Understanding the reason of Python's popularity
- b. Basics of Python: Operations, loops, functions, dictionaries
- c. Numpy creating arrays, reading, writing, manipulation techniques
- d. Ground-up for Deep-Learning

5. Exploratory Data Analysis with Python

- a. Getting to understand structure of Matplotlib
- b. Configuring grid, ticks.
- c. text, color map, markers, widths with Matplotlib
- d. configuring axes, grid,
- e. hist, scatterplots
- f. bar charts
- g. multiple plots
- h. 3D plots
- i. Correlation matrix plotting

6. Data Munging with Python

- a. Introduction to pandas
- b. Data loading with Pandas
- c. Data types with python
- d. Descriptive Statistics with Pandas
- e. Quartile analysis with Pandas
- f. Sort, Merge, join with Pandas
- g. Indexing and Slicing with pandas
- h. Pivot table, Aggregate and cross tab with pandas
- i. Apply function for parallel processing with Python
- j. Cleaning Data with python
- k. Determining correlation
- I. Handling missing values
- m. Plotting with Pandas
- n. Time series with Pandas

7. Introduction to Artificial Intelligence

- a. Dealing Prediction problem
- b. Forecasting for industry
- c. Optimization in logistics
- d. Segmentation in customer analytics
- e. Supervised learning
- f. Unsupervised Learning
- g. Optimization
- h. Types of AI : Statistical Modelling, Machine Learning, Deep Learning, Optimization, Natural Language Processing, Computer vision, Speech Processing, Robotics

8. Artificial Intelligence I - Statistical Modelling

- a. Linear Regression
 - ✓ Assumptions
 - Model development and interpretation
 - ✓ Sum of least squares

- ✓ Model validation tests to validate assumptions
- ✓ Multiple linear regression
- ✓ Disadvantages of linear models
- **b.** Logistic Regression
 - ✓ Need for logistic regression
 - ✓ Logit link function
 - Maximum likelihood estimation
 - Model development and interpretation
 - ✓ Confusion Matrix error measurement
 - ✓ ROC curve
 - ✓ Measuring sensitivity and specificity
 - Advantages and disadvantages of logistic regression models
- c. Time series analysis Forecasting
 - **1. Simple moving averages**
 - 2. Exponential smoothing
 - 3. Time series decomposition
 - 4. ARIMA
- d. Model validation and deployment
 - RMSE Root Mean squared error
 - ✓ MAPE Mean Average Percentage Error
 - ✓ Confusion matrix and Misclassification rate
 - Area under the curve (AUC), ROC curve

9. Artificial Intelligence II - Machine Learning

a. Supervised Learning

 \checkmark

- Decision trees and Random Forest
- **1. C5.0**
- 2. Classification and Regression trees(CART)
- 3. Process of tree building
- 4. Entropy and Gini Index
- 5. Problem of over fitting
- 6. Pruning a tree back
- 7. Trees for Prediction (Linear) example
- 8. Tress for classification models example
- 9. Advantages of tree-based models?
 - Association Rule Mining
- 1. Rules generation from decision trees,
- 2. Apriori algorithm
- 3. Support, confidence and lift measures
- Support Vector Machines
- 1. Linear learning machines
- 2. SVM case for linearly separable data
- 3. Kernel space
- Neural Networks

- 1. Motivation for Neural Networks
- 2. Perceptron and Single Layer Neural Network
- 3. Back Propagation algorithm
- 4. Feed Forward Neural Net
- 5. Sigmoid parameters
- 6. Weights initialization,
- 7. Decay of weights
- 8. Learning rate
- 9. Momentum
- Ensemble Techniques
 - 1. Bagging
 - 2. Boosting
 - 3. Stacking
 - 4. Gradient Boosting Machines

b. Unsupervised Learning

 \checkmark

 \checkmark

- ✓ Clustering Techniques
 - 1. Hierarchical clustering
 - 2. K-Means clustering
 - 3. Distance measures
 - 4. Applications of cluster analysis Customer Segmentation
 - **Collaborative Filtering, PCA**
- 10. Artificial Intelligence III Natural Language Processing
 - a. NLP I Text Preprocessing
 - ✓ **Tokenization**
 - ✓ Stemming
 - ✓ Lemmatization
 - b. NLP II Text Modelling
 - **POS tagging**
 - TFIDF and classification
- 11. Artificial Intelligence IV Deep Learning
 - a. ReLU
 - b. Sigmoid, Depth vs Width tradeoffs
 - c. Convolutional networks
 - d. Concepts of filters
 - e. Sliding
 - f. Pooling and Padding
 - g. Comparison between DL and ML performances over the MNIST dataset
- 12. Practical use cases of AI and best practices in AI
 - a. Business problem to an analytical problem
 - b. Guidelines in model development

13. Big Data, Azure for AI, Data Science applications

a. Big data and analytics?

1

- ✓ Leverage Big data platforms for Data Science
- b. Introduction to evolving tools
 - Machine learning with Spark
- c. Creation of R-Server clusters
- d. Computation of Big-Data ML algorithms over the Azure cloud
- 14. Analytical Visualisation with Tableau
 - a. Why is it important for Data-Analyst
 - b. Tableau workbook walkthrough
 - c. Instruction of creation of your own workbooks
 - d. Demo of few more workbooks